PROBLEM

The greatest value of $f(x) = (x + 1)^{1/3} - (x - 1)^{1/3}$ on [0, 1] is

a. 1

b. 2

- c. 3
- d. $\frac{1}{3}$

SOLUTION

. b. We have
$$f(x) = (x+1)^{1/3} - (x-1)^{1/3}$$

$$\therefore f'(x) = \frac{1}{3} (x+1)^{\frac{-2}{3}} - \frac{1}{3} (x-1)^{\frac{-2}{3}}$$

$$=\frac{\left(x-1\right)^{2/3}-\left(x+1\right)^{2/3}}{3\left(x^2-1\right)^{2/3}}$$

Clearly, f'(x) does not exist at $x = \pm 1$. Now,

$$f'(x) = 0$$

or
$$(x-1)^{2/3} = (x+1)^{2/3}$$

or
$$(x-1)^2 = (x+1)^2$$

or
$$-2x = 2x$$
 or $4x = 0$ or $x = 0$

Clearly, $f'(x) \neq 0$ for any other values of $x \in [0, 1]$.

The value of f(x) at x = 0 is 2.

Hence, the greatest value of f(x) is 2.